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Proofs and Examples of Concave R(-,-) Functions

EC.1. Proof of Statements

We use 0 to denote the derivative operator of a single variable function, 0, to denote the partial
derivative operator of a multi-variable function with respect to variable =, and 13 to denote the

indicator function. The following lemma is used throughout our proof.
LEMMA EC.1. Let Fi(z,7) be a continuously differentiable and jointly concave function in (z,2)
fori=1,2, where z € [2,Z] (z and Z might be infinite) and Z € R™. Fori=1,2, let

(2i,Z;) == argmax F;(z, Z),
(2,2)

be the optimizers of Fi(+,-). If z; < z9, we have:

0.F1(21,2,) < 0.F>(22, Zs).

if 2y >z
172 and

=0
> <0

Proof: 2z, < 29, so z < z < 2z < Z. Hence, 3ZF1(21,Z1){ £
if 21 = z;

=0 if252<§,

. _ i'e'a azFl(Zth)SOgazF2(227Z2)‘ QED
>0 ifz=2

0.1 (22, Z) {
Proof of Lemma 1: Since p(-) and ~(-) are twice continuously differentiable, R(-,-) is twice
continuously differentiable, and jointly concave in (d;,I;) if and only if the Hessian of R(d:, I})
is negative semi-definite, i.e., 97 R(ds,I{*) <0, and 8§tR(dt,If)8?gR(dt,It) > (04,010 R(dy, I7))?,
where 03 R(dy, I?) = p"(d)(di +v(I}')) +2p'(dy), 04, Orp R(dy, I) = P (di)v'(1f), and O7a R(dy, I}') =
(p(dy) —b—a(cH+rq))y"(I7). It is easily verified that the Hessian of R(d;,I") is negative semi-
definite if and only if (5"(d,)(d; +7(If)) + 2/ (d)) (p(d) — b — ale +r)y"(I) > (o (d)'(IF)).
Q.E.D.

Proof of Lemma 2: For part (a), if 74" (I7) =0, the left hand side of (3) equals to 0. Since
the right hand side of (3) is greater than or equal to 0 and (p'(d;))? > 0, the (3) holds only if
7' (If*) = 0. For the second half of part (a), it suffices to show that if v/(I°) =0, +/(I?) =0 for any
I <1°. Since v"(I#) <0 for all I} < K,, v'(I*) > ~+'(I°) =0 for any I} <I°. On the other hand,
v (1) <0 for all I < K,, so v'(I{*) =0 and, thus, v"(I{*) =0 for all I} <I°.

Part (b): By part (a), for any I such that 7”(I) =0, v'(I#) = 0. (v/(I%))* < —M~"(I})
for any 0 < M < 4o00. Now we suppose ~”(I}") # 0. Since p(-), p'(-) and p”(-) are con-

tinuous functions defined on a compact set [d,d] with p/(-) < 0 and v(K,) < v(I#) < 7,
(p"(dy)(di +~y(I)) 4+ 2p'(dy)) (p(dy) — b — a(c+14))/(P'(d;))? is uniformly bounded from below by
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a constant number, and we define this number to be —M. Hence, by (3), (7/(I%))* < —M~"(I).
Q.E.D.

Proof of Lemma 3:

Part (a). Observe that ps(-) =p'(-) and py(-) =p”(:) for any 6 > 0. Thus, let

mi=  max s (di) (d + (1)) + 2p5(de) |, _ max {2 (de)(de +(I}')) +2p (dt)}<0,
dy€ld,d),If<Ka (D5(dy))? dy€ld,d),If <Kq (p'(dy))?
k:= d b— >0
dfgand]{p( ) —b—alctry)} >0,
and

M
5= —— — k< +00.
m

Therefore, for any 6 > 6*,d; € [d,d], I < K,,

(95 (di) (ds +v(I}')) + 2p5(dy)) (Ps(di) —b— 04(0+7”d)),y,,(1ta)

(P5(de))
PR N2 ) 4.6 - b ale-t ra) (1)
P () (+ 7(( 3))2) +2pd) (—% k4 p(d) — b — ale+ )V (1Y)
(dt>(dt +’Y( ;l)z + 2p/(dt> i (_%)7//(121)
(p'(dr)) m
— M~"(I7)
>(v'(I7))%

where the first inequality follows from 6 > ¢§*, the second from p(d;) —b— a(c+ry) > k, the third
from the definition of m and the last from the assumption that —M~"(I#) > (v/(I%))? for any
I* < K,. Hence, by (3), for any § > 6*, Rs(-,-) is jointly concave on d; € [d,d], I < K,.
Part (b). Observe that 4/(-) =+'(-) and 4/(-) =~"(-) for any ¢ > 0. Since p"(d;) # 0, let
(p(di) —b—afc+ra))p”(d:)

. 2p'(d,)
= <0, l:= I+ d, +
" d?elfa;,(d’]{ (p'(dy))? } dte[d%,l?fﬁl(a{ VI +di+ p"(dy)

} >0,

and
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Therefore, for any ¢ >¢*,d; € [d,d], [} < K,,
(p"(dy)(de + 45 (17)) + 2p'(de)) (p(de) —b— a(c+14))

) AN Ta
id) 0
_(p(de) =b—alc+ra) (0" (di)(de +y(I7) +5) +2p'(dy)) ")
] i W
_(p(dy) —b—alc+rq))p"(dy u 20'(de)\ 1)
- (p/(dt))2 (g—i_fy(lt ) +dt+ p”(dt) )’Y (It)

(p(de) —b—alc+rq))p"(di) M 2p'(dy)

W) (o~ LA +dik o (1)
(p(di) —b—alctra))p"(d), M, , .
- d)) (=5

>~ My (1)
>(v'(I7))* = (AUI))%,
where the first inequality follows from ¢ > ¢*, the second from ~(I{) + d; + ilf//((jf)) > 1, the third

from the definition of n and the last from the assumption that —M~"(I%) > (v/(I#))?* for any
I* < K,. Hence, by (3), for any ¢ >¢*, R.(-,-) is jointly concave on d; € [d,d],I¢ <K,. Q.E.D.

Proof of Lemma 4: We prove parts (a) - (b) together by backward induction.

We first show, by backward induction, that if V,_; (I |, I;_1) —rql® ; —cl,_; is concavely decreas-
ing in both I, and I,_q, both g,(x¢, x;,d;, I}) := E{G\(x¢ — 6(p(dy), I}, €), 20 — O(p(dy), I, €:))}
and Jy(xf,zy,dy, I7, ;) are jointly concave, g.(-,-,-,I}") and J;(-,-,-, I}, I;) are strictly concave for
any fixed I and I, and V,(I#, I;) — rqI — cl; is jointly concave and decreasing in I}* and I;. It
is clear that Vo(1§,1y) — rql§ — cly = —rql§ — cly is jointly concave, and decreasing in I§ and I,.
Hence, the initial condition holds.

Assume that V,_; (I} |, I,_1) —rql{ | —cl;_ is concavely decreasing in both I ; and I,_;. There-
fore, G¢(z,y) is jointly concave and decreasing in x and y. For every realization of ¢, = (ef, €"),
we verify that Gi(zf —6(p(dy), I}, €t), e — 0(p(d:), I}, €)) is jointly concave in (xf,xy,d;, I})as fol-
lows: let 0 <A<1, 2% :=Azf 4+ (1 — N)xl, z.:=Ax1 + (1 — N)zg, dy :=Ady + (1 — N)dy and % :=
AL+ (1= N) IS, we have:

MGt~ (d +A (L)l = ey = (d +o(T)ef" — )
+ (L= N)Ge(x5 — (d2+7(L2))€e]" — €/, 22 — (d2 +7(L2)) " — €)
SGe(af = (di + My(1) + (L= A)v(L2))€e" — €, 20 = (du + Ay(11) + (1 = A)y(L2))€" — €f)
<Gu(@? — (do + (L))" — €8, — (d + (L)) — €0),
where the first inequality follows from the joint concavity of Gy(+, ), the second from the concavity of
v(+), the monotonicity that G,(-,-) is decreasing in both of its arguments, and €;* > 0. Since concav-

ity is preserved under expectation, g;(xf, s, di, I}') = E{G(af —6(p(de), I}, €r), 2 — 0(p(dy), I} €:)) }
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is jointly concave in (x¢,x,,d,, I}"). Note that R(d,,I}") is jointly concave in (d;, If), —0(z; — 1)~
is jointly concave in (z,1;), and —(rg + 7)) (x¢ — I#)~ is jointly concave in (x¢,I?). Therefore,
Ji(xf, @y, dy, I, 1) is jointly concave in (x¢, x4, dy, I, I;). The strict concavity of g;(-,-,-,I7) follows
directly from the continuous distribution of D, and that its support is an interval. Since g (-, -, -, I*)
is strictly concave and R(-,I}") is concave for any fixed I?, J,(-,-,-, I, I;) is strictly jointly concave
for any fixed I and I;.

Concavity is preserved under maximization (see, e.g., Boyd and Vandenberghe 2004), so the

verify that V,(I,I;) is decreasing in both I and I;. Observe that (1), —(rq+7,)(x¢ —I#)~, and
Gi(x¢ —0(p(dy), I}, €),xe — 0(p(dy), I, €)) are decreasing in I}, and —6(x; — I;)~ is decreasing in
I,. Hence, J,(z¢, x4, d;, I, I;) is decreasing in I and I, for any fixed (z¥,xz;,d;). Assume I > IS,

we have F'(I}) C F(I3). Hence, for any I,

W(If‘,[t)*rdlffclt: max Jt(ﬂf?,xt,dt,lf,lt)

(af xt,dt)€F(IT)

< max Jo(xf,my, dy, 1S, 1) = V(I3 1) — raly — cly,

T (@fwe,de)EF(1S)

where the inequality follows from the monotonicity that Jy(x¢, xy, dy, I, I;) is decreasing in I{, and

F(I¢) C F(1), thus verifying V,(If, ;) is decreasing in I}*. Analogously, if I; > I, for any I?,

V(I 1) —rqlf —cl, = max )Jt(x‘t’,xt,dt,ff,fl)

(28 ,2¢,de) EF (I

< max Ji(xd, xy,dy, 1P 1) = Vi (12, L) — rgl — cly,

T (@, de)EF(IE)

where the inequality follows from the monotonicity that J,(xf,z;,d;, I}, I;) is decreasing in I;.

Second, we show, again by backward induction, that if V;_(+,) is continuously differentiable,
9¢(+,+,-,-) and V(+,-) are continuously differentiable on the interior of their domains. For ¢ =0,
Vi(I#,I;) =0 is clearly continuously differentiable. The initial condition holds.

Assume V;_1(I{ ;,1;_1) is continuously differentiable,

ge(xf, wy, dy, It) =E{=(b+ ho) (2] — (de +~v(I;))e" — €7) "
+afViei (@) — (de +y(I7)e]" — €y xe — (de +v(I7))€" — €f)

—ra(ay — (d+y(I)))e" —€)) — (o — (di + (1)) " — €)1}
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Since €f and €" are continuous, it is easy to compute the partial derivatives of ¢(-,-,,) as follows:
Opo ge(w, T, ey If') =E{—= (0 + ha) 1w > (dy 4+ (1) e+

+adia Vioa(a) = (de +(I7))€" — €m0 = (de +7(1}))€)" — €7)} — ara,
0wy ge(@, e, dy, IY) =E{ a0y, Vioa(2f — (de +v(I7))€" — €fxe — (do +(I7))e)" — €)} — ac,
04, 9e(f s e, di, 1)) =E{ (b4 ha) € (a5 (dy1~(12))em +c0)

— € O0ra Vi@ — (de +(I7)) e — €, 20— (do+ (1)) " — €f)

— €O, Vi (o} — (de +y(I7))€e" — € w0 — (de + (1)) € — )} +a(ra+¢),
Orege(@y, e, dy, 1)) =E{ (b + ha)’Y/(Ita)eln1{z§2(dt+v(15))e?+e?}

— oy (I})ei"Ora Via (0} — (de + (7)) " — €,z — (do +y(I}')) € — €)

—a'(I)€0r,_, Via () — (de + (1)) &" — €/ = (de +(I}') )€ — 6?)}(~ + a(;'d +o)y' (I7)
EC.0

where the exchangeability of differentiation and expectation is easily justified using the canonical
argument (see, for example, Theorem A.5.1 of Durrett 2010, the condition of which can be easily
checked observing the continuity of partial derivatives of V;_;(:,-), and that the distribution of D,
is continuous.). Since at least one of ¢f and ¢}" follows a continuous distribution, d,a g: (¢, 1, dy, If),
02,96 (28, T4y diy IE), Oa, 9:(2, T4y diy IE) and Opagi(wf, x4, dy, I}') are continuous. Therefore, g;(-,-,-,)
is continuously differentiable.

Since g;(,-, -, I{*) is strictly concave and continuously differentiable, J;(-,-,-, I, I;) is strictly con-

and x; # I, i.e., it is continuously differentiable almost everywhere. By envelope theorem, V,(-,-)
is also differentiable on the interior of the feasible set F'(I) for x¢* (I, I;) # I} and x} (I#, 1) # I,.
For the case z¢*(I}, I;) = I or z; (I, 1;) = I;, we show the continuous differentiability of V,(-,-)
in the proof of Theorem 1. This completes the induction and, hence, the proof of Lemma 4.
Q.E.D.

Proof of Theorem 1: Parts (a) - (d) and the differentiability of V,(I;,I;). We first show
parts (a) - (d) and the continuous differentiability of V;(I?,I;).
Observe that if x; > I; (i.e., the firm orders),

8a:t<]t(x?7xt7d7 I:r[t) = _w +a$tgt(x?7xt’dt7‘[g) <0.

Hence, if z; (I}, I;) > I, x¢* (17, 1) =z (I}, I;) > I, > I and the optimal policy is given by Equation
(7). deee, 3 @ (I0) > Iy (a0 (I8, 1), (10, 1), 5 (I, 1)) = (e (1), a3 (1), di(I7)). This completes
the proof of part (b).
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If x; < I; (i.e., the firm disposes), —0(x; — I;)~ = 0(x; — I,). Hence, the objective function
Je(xf, e, di, I 1) = — 01+ R(de, 1) + (0 — )y — (rg + 1) (2f — 1) + ¢y
T E{G (2} = d(p(de), I}, €0), 2 — 6 (p(de), I, €1)).-
Hence, if x;(I7,1I;) < I;, the optimizer prescribed in Equation (9) is the optimal policy. i.e., if
o (I0) < I, (a0 (I8, 1), (I8, 1), df (I8, 1)) = (£¢(18), Z,(1%), d,(I%)). Part (c) follows.
Next we show that z¢(I7) < z,(I7). If x¢(I) > z,(I7), suppose I, € (z,(I}),z?(I})). We have
that:

{ch(x?(lf),w?(ff)wﬁ(1f>7ff7h) > S gy acia (@ D i I 1) (EC1)

Jt('%?(lf)vjt(If)vdt(Ig)7If’It) > SupxggIt,dte[Q,J]{Jt(x??Itﬂdt7I£l7It)}'
By the concavity of J,(-,-,-, I, I;),

sup  {Jy(af Ly dy, I 1)} 2 Na(af (1), 29 (1), e (17), I 1)+ (L= M) T (&5 (1), &o( 1)), o (1), I 12),

¢ <It,di€[d,d]

where Az?(I7) + (1 — A\)Z;(I) = I;. The above inequality contradicts inequality (EC.1). Hence,
x¢(I8) <z, (I7). Part (d) thus follows from part (b), part (c), ¢ (1) < Z:(I}), and the concavity
of Jy(+,+,+, I, I;). The second part of part (a) summarizes parts (b) - (d).

suffices to show that V,(I¢, I;) is continuously differentiable when x¢*(I7,I;) = I or =} (I}, I;) = I,

at the points where z} (I, I;) = I;, because the continuity of 0;aV;(I,I;) at the points where
x@* (I, I;) = I follows from the same approach.

By the proof of Lemma 4, it suffices to check that the left and right partial derivatives,
o, Vi(It, I;—) and 0, V,(I#, I,+), are equal when [, = «¢(I{) and I, = 7;(I}). For I, = z}(I}"), by

the envelope theorem,

O Vi(If, zi(If) =) = ¢
O Vil af(If)+) = e+ B+ Oueg(@f (I7), 27 (I7), de(17), 1Y) + O g (af (17), 2 (17), dy (1), 17).

The first order condition with respect to ¢ and z, implies that
B+ Ougg(@y (I1), ¢ (1), di(I}), I}') + Oy, g (a (1Y), 2 (I}'), i (17), I}') = 0.
Therefore, 0y, Vi (I}, x¢(I)—) = 0, Vi(I}, x¢(I#)+). For I, = Z,(I}), by the envelop theorem,

O VI & I0) ) = 0 )
VAL, G I0)4H) = =+ 0y, g (@ (12), & (10), di (12), I9).

The first order condition with respect to x; at I, = Z,(I{*) implies that

0, g(FE(I0), & (18, dy(I0), 1) + 6 —p = 0.
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Hence, 01, Vi (17, &,(1¢)—) = 01, Vi (I, &,(If#)+) and the partial derivative 0y, V; (17, I;) is continuous.

Part (e): Let
Ji (@, de, 1Y) = R(dy, 1Y) + By + g} (2, di, 1)),

where g (x¢,dy, I#) = E[GY(x¢ — 0(p(dy), I7, €))], with G¢(z) = G¢(z, x).
We first show that z¢(I7) is decreasing in I{. Let v, :=~y(I?) and y; := d; + ;. Then, we have
Ji(xd, dy, 1) = j{‘(m?,yt,%), where

i (@ g ) = R (g ) + B+ E{GY (af —ye)” — )},
with R*(ys, V) = R(y: — Y4, I"). We need the following lemma that establishes the supermodularity
of R*(-,+) and R(-,-):

LEMMA EC.2.  (a) R*(ys,v:) is strictly supermodular in (y.,7:), where y, — v = d; € [d,d] and

Yy > 0. In addition, R*(y:,:) is strictly concave in y;, for any fized ~;;

(b) R(d:, I{) is supermodular in (d;, I}), where d, € [d,d] and I} < K,. In addition, R(d;,I}") is

strictly concave in d;, for any fized I} .

Proof of Lemma EC.2: R*(y;,v:) = (p(y: — ) — b — a(c+ rq))y; is twice continuously
differentiable when 1, —; = d, € [d,d] and y, > 0. To prove the supermodularity of R*(-,-), it
suffices to show that 0,,0,, R*(y:,y:) > 0. Direct computation yields that: 9,,0,, R*(yi, V) =
—(0"(ye = 1)yt +1'(y: — 7). Since p'(-) <0 and p"(-) <0, —(p"(ys — ¥¢)ye + P’ (y: — %)) > 0.
Hence, R*(y,:) is strictly supermodular. Moreover, 92 R*(y, ) = 0" (ye — ve)yr + 20" (yr —
v¢) <0, since p”(-) <0 and p'(-) < 0. Hence, R*(y;,:) is strictly concave in y;, for any fixed
~v¢. This establishes part (a).

R(-,) is twice continuously differentiable, 0y, 0ra R(d;, If') = p'(d;)7'(If) > 0. Hence, R(-,)
is supermodular. In addition, 03 R(ds, I}") = p"(d;)(dy + y(I})) + 2p'(d¢) <0, so R(dy, I}) is
strictly concave in d, for any fixed I. Q.E.D.

As shown in the proof of Lemma 4, G,(-,-) and, thus, G¢(-), is concave. Note that €* > 0, so, for
any realization of (e, €), it is easily verified that G¢(z, — y.€]” — €?) is supermodular in (z,y:).
Hence, E{G¢(x; — y.€]* —€})} is supermodular in (x4, y,), since supermodularity is preserved under
expectation. By Lemma EC.2, R*(y,,,) is supermodular and, thus, J(z, y;,7;) is supermodular in
(¢, Ys,ve)- Therefore, the optimal order-up-to level, z¢(I}*), and optimal expected demand y,(I{) :=
d:(I{) + v are increasing in +;, and, since v(-) is decreasing in I}, decreasing in I

We now proceed to show that the optimal expected price-induced demand d;(I) is increasing

in I, Let I > I$, x§ :=x¢ (1), x5 :=x(13), di :=d,(I}), do:=d(I3) yy :=dy + (1), and yy :=
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dy +y(I5). We prove that d; > dy by contradiction. Assume that d; < dp. By Lemma EC.1, d; < d
implies that 0,4, J7* (2§, dy, I{) < 04, J7 (25, d2, 15).

Oa, R(dy, 1) > 04, R(dy, 1) > 8y, R(dy, I2),

where the first inequality follows from the supermodularity of R(-,-) and the second inequality

follows from the strict concavity of R(-, ;). Hence,

Oa gy (21, dy, 1Y) = O, J}' (2], dv, 1T ) = O, R(dy, IT') < Ba, S (25, da, I3) — Oy, R(da, I3) = Oq, 97 (753, d2, I3).
(EC.2)
Let
F(X):==(b+ha)lix>0y —}—a[@,zz_lvt,l(X,X) +0r,_, V2 (X, X)—rqg—c] <0,

which is decreasing in X. We have:

Ouegi (s i, 1Y) = B{f (27 —yi€)" — €/)} and Oa, g7 (a7, di, [}) = B{—€]" (] — i€ =€)} for i=1,2.

(2 3

Recall that we have proved z§ > z{ and y5 > y{.

If ¢ =25, 2§ —yle]” — €l > x5 — ySe” — €7 for any realization of (ef,€}"). Hence,
Oug g7 (21, dy, IY) = B f (Y — 96" — €§)} SE{f (25 —yo6" — €))} = Duggi' (25, do, I5),

where the inequality follows from that f(-) is decreasing.

If 25 > 21, by Lemma EC.1, Ope i (2, d1, IT) < Oy J{ (25, d2, I5) and, hence,
azggg(x(f7dla Iil) = a"c?']ta(xlllydh]il) - /8 S az?t]:(:rga d27lg) - /B = argg?($g7d27lg)'
Note that there exists an €}, such that x{ —y,€" <x§ —yq€)” if €] <€ and x —yfe}* > x5 —yse if

€' > er (e may equal m or mm.). Since f(-) is decreasing, f(z{ —yi€]" —€!) — f(x§ — yae" —€¥) >0

for any €}" € [m, €;] and any realization of €!. So

=" (f (@) —pnel” —€f) = f(a5 — 96" — €)) = =i (f (27 —pn€)” —€f) = f(25 — 96" —€)), (EC.3)

for any € € [m,e;] and any realization of €. Analogously, for € € [ef,m], f(z] — y1€" — €¥) —
f(x§ — yae” — €7) <0, and (EC.3) holds for € € [ef,m] as well. Therefore, (EC.3) holds for all
€' € [m,m] and any realization of €.
Taking expectation, we have:
Oa,gi' (21, d1, 1Y) — Da, gy (05, do, 13) = B{—€" (f (27 — €] — &) — f(25 — 26" — €)))}
2 EB{—e; (f (2] =€ —€f) = f(25 — 26" — €))}
= —fi(amgg?(:v% di, 1Y) — 830«;9?(:63, da, I3))

(EC.4)

>0

)
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where the last inequality follows from 0, gf (21, d1, IT) < Opagf (25, d2, I5). (EC.4) contradicts (EC.2)
and, hence, d; > ds, i.e., d;(I}) is increasing in I*. The continuity of z{(I}*) and d;(I?) follows
directly from that the objective function J{(-,-, I{*) is strictly concave for any given I?. The proof

of part (e) follows. Q.E.D.

REMARK EC.1. The supermodularity of R*(y;,7:) implies that to better take advantage of the
high demand induced by low inventory level, the firm should adjust its price to a level such that

the expected demand will increase.

Proof of Theorem 2: If h, >ac—s, 0 —=c—s—h, — (1 —a)c=ac—s— h, <0. Since
gi(xf, xy,dy, IP, 1) is also decreasing in x;, Equation (9) implies that z,(If*) = Z¢(If), for any t and
I, which proves part (a).

Observe that for any (¢, z,d;, I, I;),

T
Op,ge(xf, @y, dy, I} 1) > — zoﬂ Vhe > — Zoﬂ)hw, t=T,T—1,---1,

where the first inequality holds as an equality if :1;;‘([ ol ;) = 1;, for all j <t — 1. Hence,
Ou, gt (2, x4, dy, I, 1) is uniformly bounded from below by —(Z],Tzl ad)h.,, for any t. Thus, if 0 —¢ =
ac—hy, —s> (Z?:l al)hy, T,(I) = +oo for any ¢ and I?. Hence, s, = ac — (Z;‘F:o ad)h,,. This
proves part (b).

If infroc, v' (1) > =M, for any (zf,z,ds, I}, 1),

Opa g (2}, w1y dy, I, 1)) > MZaf B+ ha) Za? (P+he), t=T,T—1,---1,

Jj=1
where p is the maximum marginal revenue and h, is the maximum marginal holding cost. Hence,
Dpage(xf, x4, dy, If, I) is bounded from below by —M(ZJ L) (p+ hy), for any t. Thus, if 7447, +
¢>M(X [, o) (p+ha), & (If) > I, for any If < K,.

If infra g, v (If') = —00, limya_, k, ¥'(I{) = —oc. Hence, for any z;, d;, and I,
Ihm Owege(If e, dy, 1Y 1) Sa(p—b— (1 —a)(c+71q)) lim v "(I) = —oc.
a t_> a
Hence, for any r,, and any z;, d; and I,

Ongt(If—,xt,dt,If,It) =7r;+7, —I—QZ)—I—azggt(If,xt,dt,If,It) — —00, as I}' = K,,.

The above limit completes the proof of Part (c).
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For notational simplicity, we denote z®* := x¢*(I* |, 1,_1), x* := x;(If ,[;_1) and d* :=

dy(If_1,1;—1). Observe that
81;11%_1([;11, L) <(p—b—alc+ra))y (IL,) + 8Igilgt_1(ma*, x*,d* I8 ). (EC.5)

By Equation (EC.0),

8w?_lgt—1<xa*7 $*, d*7 Itafl)

8:vt,1.gt71(xa*7 LU*, d*7 I:Ll)
8If_lgt71($a*7 I*, d*v Ig_l)

E{fi(e"1)},
E{f2(e} 1)},
=y (L) E{et™ [fr(elry) + falef )]},

where

filer) = Ee {—(0+ha)lipess @ty +eo_)
+0461§,2‘/1t—2(xa* — (@ + (I y))ey — ety x* — (d +y(IE))e, — €t 1)} —arg
foe 1) = Ee?,l{aalt_zvtd(ma* — (@ + (I ))e — e, o — (d* + (I y))e, —€f )} — ac.

The first order conditions with respect to z¢ ; and z,_; suggest that

E{fi(e") + L)} < (¢ =) = =5

Since f1(-) <0 and f(-) <0, we have:

E{e/, [f1(e) + fa(€ )]} SE{m[fi(€ ) + fa(€” )]} = mE{fi(e)” 1) + fa(€” 1)} < —mB.

Therefore, by inequality (EC.5),

Org Vier (I, 1) < (p—b— (e +ra) + mB)Y (1) (EC.6)

So for any d; € [d,d]| and any z,
8Iggt(0,:nt,dt,lf) §04E[812171V;,1(—(dt +y(IP))e” — €tz — (de +y(I7)) € — €))]
<aE[(p—b—alc+rs) + mB)y (= (di +v(L1))€e" — €)]
_ (EC.7)
<a(p—b—alct+re) +mpB)(1—1)y'(=D)
<—(rg+re+9),

where the first inequality follows from equation (EC.0), the second from (EC.6), and the last from

the assumption that a(p—b—a(c+rq) +mB)(1 =)y (=D)+ (ra+rw+¢) < 0. The third inequality
of (EC.7) follows from the following inequality:

E[Y(=Dy)]=Ep,>p[Y (=De)] + Ep,<p[v(=Dy)] <0+Ep,<p[y'(=D)] < (1 — )7 (=D),

where the first inequality follows from the concavity of (-) and the second inequality follows from

the definition of D. (EC.7) implies that z*(I2,I,) =0 for all I¢ < K, and all I,, which completes
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the proof of part (d). Q.E.D.

Before we proceed to prove the results in Section 5, we remark that R(d;,I]) shares the same
properties as R(dy,I). i.e., we have the following counterpart of Lemma EC.2 in the model

without inventory withholding:

LemmA EC.3.  (a) R¥™(y, Vi) is strictly supermodular in (y.,~:), where R¥*(ys,v:) := R*(y, —
Vi, 1), Yo — Yo = dy € [d, d] and y, > 0. In addition, R**(y,,~y) is strictly concave in vy,, for any fized
-

(b) R*(d;, I?) is supermodular in (d;, I¢), where d; € [d,d] and I* < K,. In addition, R*(d, 1)

is strictly concave in d, for any fived I

Proof of Lemma EC.3: The proof is identical to that of Lemma EC.2, and hence omitted.
Q.E.D.

Proof of Theorem 3: The proof is very similar to that of Lemma 4 and Theorem 1, so we only
sketch it.

For parts (a) - (c), the proof is exactly the same as that of Lemma 4, and hence omitted.

To show parts (d) - (f), we define the following unconstrained optimizers:

(zf (If),df (I7)) == argmax {R*(dy, I7) + B°xf + E[G} (27 — d(p(dy), I} €)1},
w‘tnga,th[d,d]
and
(z)'(I7),d; (I)) = argmax {R*(dy, I}') + (8 + 0)ay +E[G; (2 — (p(dy), I} €))] }-
23<Kq,di€ld,d]

We need the following lemma:

LemMa EC.4. Let v, :=(17), U(2f, ye, ulve) == B (o, ve) + paf +E{G; (] —yuei” —€f)} is super-

modular in (x¢,y., 1) for any given ;.

Proof of Lemma EC.4: Since G} () is concave and €}* > 0, E{G} (2} — y€]" — €})} is super-
modular in (x¢,y;). It’s also clear that pz¢ is strictly supermodular in (x¢, ). Therefore,
U (¥, ys, t]y:) is supermodular in (z¥,y:, p) for any given v,. Q.E.D.

Lemma EC.4 and its proof imply that /(1) <z (I{*) since 3°+ 6 > 3°. Exactly the same argu-
ment as in the proof of Theorem 1(e) implies that z (1) and xf (I}*) are continuously decreasing
in I and dF(I}) and df (1) are continuously increasing in I, I :=sup{ly: I} < zF(I})} and
IF :=inf{I¢: I? >z (I#)}. It’s clear that I} and I}/ are the thresholds in part (d). Therefore,

xb(Iy) i Ip <1k
ay (1) = I¢ if IF < It < If";
ZH(I8) it 10> IH.
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It’s clear that x;*(I;) satisfies the statement in part (e). Therefore, we have

dL(I7) if 10 < 1P,
d;*(I}) = S argmaxy, ¢y 4 J7 (17, de, I7)  if IF < Tp < IJ;
dH (1) otherwise.

To prove part (f), it remains to show that di*(I?) is increasing in I¢ for I} < TI? < TH. Let
U (dy, If) := JF(17,dy, I}) and it is easily verified that U;(dy, I{*) is supermodular in (d;, I}*). Thus,
ds*(If) is increasing in I, which completes the proof of Theorem 3. Q.E.D.

Proof of Theorem 4: We show both parts by backward induction.

For part (a), we use backward induction to recursively show this result. For t =0, Vg (-) = Vg (-) =
0 and, hence, 072 Vi () = 8131703(13) for all I§. We show that: if Opa V2 (17 ,) < 815_1‘7ti1(ff_1)
for all It < K,, (a) I} <IF, (b) I <If, (c) i*(If) < @7(I7), () di*(If) > d;*(I¢) and (e)
Dra Ve (I7) < 81g‘7t3(lf) for all I¢# < K,. To prove these inequalities, we define (&F(I%),d"(I#)) and
(2 (I0),d" (I*)) as the unconstrained optimizers in the model with demand D;, corresponding to
(eE(I7), d (1)) and (a2 (1), d2(If), respectively. Let yf (I¢) = d(I2) +4(I¢), 52 (12) = dE(I¢) +
H(I7) = dF(If) + y0, B (di, I7) := R*(dy, —00), and Gi(y) := —(hq + b)y™ + a[Vi,(y) — cy]. We
define the objective functions JE(x%,d,, I0) := R*(dy, I%) + B + g5 (a2, dy, I2), JE(22,d,, 1) ==
Re(dy, If) + Boaf + g7 (x, dy, 1), where g5 (g, dy, I7) := B{G; (xf — 0(p(dy), If, €))}. Since € =1
with probability 1, g (22, d,, I%) = Hf (z¢ — dy — (1)) and §; (x2,d,, I*) = Hf (2% — d; — 7o), where
H;(X):=E{G;(X —€)} and H;(X):=E{G;(X —¢})}.

First, we show that, if 9y Vi* (I ) < s Vts (I8 ) for all I, < K,, zE(12) § tE(I8),
() = dET). o (07) < 01T, and df(IF) = dP(17). Since 0y Ve, (I20) < 0 Vi1 (07,
OxHi (X) < dxHp(X) for any X. We only show that xF(I#) < 2L(I#) and dF(I¢) > dtL(It“), while

2H (1) < #H(I¢) and d¥ (I#) > dF (I#) follow from the same argument.

We show by contradiction that z(I¢) < #5(I%) and d-(I¢) > d=(I#). Note that, for the model
with inventory-independent demand (i.e., the firm faces ljt), it is reduced to the classical joint
pricing and inventory management problem with stochastic demand introduced in Federgruen and
Heching (1999). Hence, 2£(I¢) and d*(I%) are constants independent, of I?.

Assume that 2f(I) > #7(I}). Lemma EC.1 yields that O.eJ/(xf(I}),df(I}), 1) >
Ope JE(ZE(IE),dE(1f), If). Hence,

Ox Hy (xE(I7) — yE(I8)) =00 JE(aF(I2), dF (I0), 1) — 5°
>0,0 JE(aF(I7),dP(10),17) — B°
=OxH; (&F(I7) — 9 (I7)).
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Since dxH;(X) < OxH;(X) for any X and both of them are strictly decreasing, y*(I*) >

gE(I%). Thus, dX(I7) = yE(I8) — ~(I8) > L) — 4o = d-(I2). Invoking Lemma EC.1, we have

Oa T} (wf(I7), dF(17), 17) = B, JE(FE(I7), dE (I7), 1), and

O, B (dy (I7), 1) =0a, I (ay (I7), dy (I7), 1) + Ox H (f (1) =y (I}))

>0, JE (&) (1), di (1), 1) + Ox H (2 (17) — 9 (1))
=0, B (d} (I7), I7)

Since A, R*(de, ) = 8y, R* (ds (), 1(19)), By B (g (1), 2 (I2)) = 8y, B (§H(IF), ). However,

the strict concavity of R**(-,7,) and the supermodularity of R**(,-) yield that

Oy, R (yy (I7), v (I7)) < Oy, R (i (17), v (I7)) < 0y, R (3 (I}), 70),

which leads to a contradiction. Therefore, we have xZ(I®

Assume that d=(I%) < dE(I%), so yE(I8) = dF(I7) + ~(
yields that 9y, JE(zF(I0),dE (1), I8) < 8y, JE(ZE(I2), dE(
and the supermodularity of R*(-,-) imply that

Na

2k
I#) < dF(I8) + 40 = 9F(I*). Lemma EC.1
I),I). The strict concavity of R*(-,I%)

O, R (df (I7), 17) > 0u, R (df (I7), 1) 2 Oa, RP(df (1)), —00) = 0, R (dy (17), 7).

Hence, we have:
Ox Hy (wy (I}) =y (I}')) =0a, R (df (1), I7) — Da, I (wy (1), dy (1), 1)
>0, B (dy (17), 1) = Ou T (2 (1), dy (17, 17)
=Ox Hy (& (I7) = 9 (17)):

The first order condition with respect to % implies that dx H? (zF(I8) —yL (I%)) = Ox H (25 (1) —
gE(I#)) = — 3, which leads to a contradiction. Hence, d&(I#) > dX(I#). We have thus proved that,
it Ory Ve (I2) < 0 V2 (12 ) for all T2, < Ky ab(I2) < 2H(I2), dH() = A5, af (IF) <
EH(I0), and dF (1) > dF (I#). IF < IF and IF < IF follow immediately from zF(I¢) < #F(I¢) and

B (1) < #1(I7).

Next, we show that ds*(I%) > ds*(I2), for all I¢ < K,. Since dX(I%) > db(I%), d5*(I0) = d- (1) >
dE(I9), for all I¢ < IE.If I* e [IF, IF],

di (1) = dy (1)) = d (17) = df (1F) = d (17),

where the first inequality follows from Theorem 3, the second from d%(I%) > d*(I¢), and the last
equality from Federgruen and Heching (1999) Theorem 1. If I® € [IL, I¥] (it might be an empty
set), zi*(I#) = &5* (1) = I. The supermodularity of R*(d;, ) implies that

Qay R (5™ (I1), I1) = 04, R*(d; (If), —00) = 04, R* (d5" (I1), If).
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Since o > v(I*), both H(-) and H(-) are concave, and dxH;(X) < dxH?(X) for all X, so
—Ox Hi (I — di* (1) = (1)) = =0x H} (I — di* (1) — o). Hence,
Ou, JE (I} i (1), 17 = 0a R (™ (1), 1) — O H (I} = " (1) = (1))
> O, R (" (1), 1) = Ox H (17 = di* (1) = 7o)
=04, Jy (175" (7). 17),
Le., di*(I0) > di*(I0). If I¢ e [IF,IF], a3*(I8) < &5*(I¢) = I¢. The first order condition with
respect to 2 implies that Oy H (25*(I2) — ds* (I,) — (1)) = —(8° 4+ 0) < Ox HE (I — ds* (I7) — o).
If ds* (1) < d5*(I%), Lemma EC.1 implies that 8y,.J¢ (25*(I0), ds*(I8), 1) < 8y, J¢ (12, ds* (18), I%).
Hence,
Ou, R (dy™(17), I}') =0, 7 (2 (1), dy" (1), 1) + Ox H (2 (1) — di* (1) — (I}'))
<Ou Sy (17 (1), 1) + Ox HY (1 = di* (1) = ) (EC.8)
=0, R (d" (1), I7).

The strict concavity of R*(-,I;*) and the supermodularity of R*(-,-) imply that
O, R (5" (1), 17) > 0a B (" (17), 1) = 04, R (d; (1), = 00) = a2 (di" (1), I7),

which contradicts inequality (EC.8). Hence, d;*(I¢) > d;*(I¢). Finally, if I¢ > [F, d3*(I%) =
dH (1) > dF (I¢) = d* (I*). We have completed the proof of ds*(I2) > ds*(I#) for all I* < K,.

To complete the induction, it suffices to show that if Or. V;*,([7;) < 81?71‘7& (If) for all
It <K, 01 VE(I7) < Blgf/ts(lf), for all I* < K,. Note that £¢*(I,) and d:*(I¢) are constant if I <
I and I, > I}, by Theorem 1 in Federgruen and Heching (1999). Hence, 07 V;*(I*) < Oy V2 (I2) for
all I¢ <IF and I¢ > I[, since 052 VS (1) < 05a Vi (If) = ¢, if I¢ < IF, and 050 VP (If) < O VP (I7) =
c—0=s,if I*>IF If IF <1, <IF, there are two possible cases: IF < IH <IF and IF <IF <IF.

If 17 < L, O V2 (I7) < 613%8(121) for all I < K, follows immediately. Now assume that I/ €
[IE,IH). If I, € [IF, IF), a5* (1) = &5*(I7) = I?. Hence,

O ViE(IP) = e+ B+ O R (dy (I7), 1) + Ox HY (17 — i (I7)) — 7' (1) Ox Hi (17 — i (I7)),
O Ve(Ip) = e+ B+ Ox Hy (17 — 97 (1)),

where 8 (I7) = d5*(I%) + v(I8) and §5(I8) = d5*(I*) + 7o. It suffices to show that &xH?(I* —
Y (I0)) < Ox Hy (It — j (It). We use the following lemma, to prove this inequality:

LemMA EC.5. Let y, = argmax,, { R** (y:,70) + Hy(I0 — )}, yo = arg max,, { R**(y,v0) + H (I} —

yi)} and y3 = argmaxyt{Rs*(yt,'y(If)) +H (I} —y)}, for I € [ftL,ItH] We have 8XI:If(It“ —yp) >
OxH; (I} —y2) > Ox Hy (I} —y3).
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Proof of Lemma EC.5: Since dxH;(X) > dxH;(X), 8,,R**(y1,70) — Ox H (I — 1) >
9y, B (y1,70) *8Xﬁts(1ta —y1), e, y1 <yo. oy =1, 3Xﬁf(ff —y1) = Ox H; (I —y2) follows
from Oy Hy (X) > Ox Hi (X) for any X. If y; < ya, 8,, R**(y1,70) > 0y, R**(42,70) by the strict
concavity of R**(-,-), and 8y, R*(y1,%) — Ox Hy (I — 1) < 8y, R* (y2,%) — Ox H; (I — y2)
by Lemma EC.1. Hence, dxH;(I* — 1) > OxH (I* — y,). For the second inequality, the
supermodularity of R**(-,-) yields that y, > y3 and, thus, OxH (I} — y2) > Ox H7 (I — y3).
Q.E.D.
Invoking Lemma EC.5,

Ox H (I —y; (If)) = Ox H (If —ys) < Ox H; (I — 1) = Ox H (I = 33 (I7)).
Hence, 97 V*(I7) < 9 Vi (I7) for all I € [IF, I]7). If Ip € (1], I]7],
A VA (I) < ¢ — 0 = 0 V2 (I]) < 01 V2 (1),

where the first inequality follows from the first order condition with respect to x{. This completes
the induction and the proof of part (a).

To prove part (b), it suffices to show that if 9;a V2 (If ;) < 8157112;11(];‘71) for all I | < K,,
(a) zE (1) < (I“) (b) 2{1(I) < &' (I}), and (c) Ora Vi (I}) < 8[;117,55(121), forall It < K,. Fort=0,
(9[61 ( ) 6](1 ( ) 0 for Ia < K

First, we show that zF(I?) < #L(I?), and the proof of zf(I*) < zF(I?) follows from
the same argument. If xy(If) > Z{(I}), Lemma EC.1 yields that OueJ/(z{(I}),do,I{") >
Do o JE(ZE(I0), dy, I%). Hence,

Ox H; (wf (If) =yt (1) = Oug JE (2 (1) do, I7) = B° > Dug I (1 (IF), do, 1) — B° = Ox HE (3 (I7) — 9 (7))

Since dx H (X) < 8xH:(X) for any X and both of them are strictly decreasing, y=(I¢) > jF
However, ytL(I“) =dy+~(I%) <do+A(I%) = gL (I#). This contradiction shows that zX(I#) < #F(172).
xf (I7) < 2 (1) follows analogously.
To complete the proof, we need to show s V;*(If') < 81aVS(I“) for all I < K,. For the case
I¢ e [IL, IH], the proof is identical to that of part (a), and, hence, omitted. If 1o < I,
{amu:) — et (b ac)y (1) =¥ (I1)0 He (o (1) — 2 (12)),
O Vi (IP) = e+ (po—b—ac)y'(I7) =4/ (I!)Ox Hy (&7 (1) — 9; (I7))-
Since z{*(I7) < &3*(I), there are two cases: (a) x5*(If) = &5*(If) and (b) af*(If) < & (I7).
If zi=(I7) = 237 (I7), (1Y) — vy (I7) = &7 (I7) — 9;(I7) and, hence, OxHy (x;"(I}') — y; (I})) <
Ox H (25*(I8) — g (I)), since dx Hy (X) < dx H; (X) for any X. If x3*(I#) < #5*(I*), Lemma EC.1
yields that Oe J7 (z7*(If), do, I}') §(9mgjf(§cf (If),do, I}"). Hence,

Ox Hi (" (I7) =i (1) = Oug I3 (" (1) oy 1) = B° < Qup S (7 (I7) o, 1) — B° = O H (277 (1) — 2 (I7)).
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We have thus showed that dx Hf (x5*(I0) — ys (I#)) < Ox H (#5*(I%) — (1)) in both cases. There-
fore,
Ora Vo (1Y) =c+~'(I{') (po — b — e = Ox HY (7" (1}') — y; (I}')))
<c+4/(I)(po — b — ac— Ox H} (&7 (1) — 5; (1))
=0 Vo (I7),

where the inequality follows from ~/(I}*) <4'(I#) <0 and
po—b—ac—OxHy (2" (I!) = y; (1)) = po — b — ac = Ox H (& (I7) = ; (17)) > 0.

The proof of the case I¢ > IF follows from the identical argument of the case I¢ < IF, and is,
hence, omitted.

If Iy € [IF, IF),

)+ Ox Hy (a7 (I7) — y; (I7)) = ' (I7) Ox Hy (a7 (1) — y; (I7')),

O V(1) = e+ B°+ (po—b—ac)y(], i
(If)0x Hy (237 (1) — 97 (I7)).

D Vet) = ot (po—b—a0)y(I7) -3
Note that Ox H; (z*(I¢) — y; (If)) < —B° = Ox Hy (#3*(If) — 93 (I7)). Therefore,
Ora VP (1)) =c+ B° + Ox Hy (" (I7) — y; (1)) + ' (1F') (o — b — ac = Ox H (7" (1)) — y; (I}')))
<c+7/ () (po = b— ae = Ox H3 (&7 (I7) = §; (I}))
=05 Vi (I7),
(EC.9)
where the inequality follows from ~/(I#) < 4'(I¢) < 0, Ox Hy (x3*(I¢) — y3(I¢)) < Ox Hy (33 (I¢) —
g; (17)), and

po—b—ac—OxHy (2" (1) = y; (1)) = po — b — ac — Ox H; (&7 (17) = ; (1)) > 0.

We have thus showed 972V (I7') < 815‘71&8(—73) for all I} < K,, which completes the proof of part
(b). Q.E.D.

Proof of Theorem 5: We employ backward induction to prove parts (a) - (d) together. We
define Hy(X) :=Ee{—(b+h.)(X — )" + a(V2(X) — cX)} and H(X) =B {—(b+ ho)(X —
)" + Ve, (X) — X)), so that g7 (5, di, ) i= Hp (2t — dy —y(I¢)) and 3} (a5, d,, I¢) == FE} (af —
d; —v(I%)). We define the objective functions JF(x¢ d;, I¢) := R*(dy, I?) + B°z¢ + gi (xf,dy, I?),
JEgydy, 1) = Ro(d 1) + Aoy + g (o, di, 1), (s di, 1) = RO (do, 1) + (B° + O)af +
g; (8, dy, I8, and JH (28, dy, I8) := R¥(dy, I2) + (B° +0)x¢ + g5 (3, dy, I?), where § = c— 3 < c— s =0,
Let 5, := (1), y; (If) := d;* (1) 4+ and §; (1) := d;* (1) + .
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It suffices to show that if dre Vo (If,) > O Vo, (If,) for all I < K,, (1) It > I}, (2)
F3(I8) > @y (Ip) for all Ip < IH, (3) di*(If) < di*(I7), and (4) Opa V(1) > 05e Vi (I7). Since
Org Ve (I)) > O V2, (If), OxH(X) > 0x H(X). For t =0, 9 Vs (13) = 01 Vg (I§) = 0, s0
the initial condition is satisfied.

We first show that if dre V(I y) > Ope Vi (If,), &F(I8) > xF(If), dF(I7) < dF(If), and
dH(19) < dH(I2). 2E(17) > 2L (1) and dE (1) < d-(I2) follows from the same argument as the proof
of Theorem 4. We show by contradiction that d¥ (I¢) < d¥ (I¢).

Assume that dZ(I%) < dP(I#), so y(I%) = dH(I®) + v, < d*(I?) + v, = g (I?). Lemma EC.1
yields that g, J7 («fF (I¢), i1 (I7), 1¢) < D J7 (211 (17), A (1), I¢). The strict concavity of R*(-,I7)
imply that 0y, R (dF (I2), 1) > 8,4, R*(dF (I7), I*). Hence, we have:

Ox H () (If) — yy' (1) =04, R (" (I7), 1Y) — Da, T (" (1), A" (IF), L)
>8dtRS(CZfI(Ita)va) - adtth('f:f(Ita)adf(If)vlta)
=0x H; (&{ (1) — 9 (I}"))-

The first order condition with respect to x¢ implies that
Ox H; (wf (I!) =yt (I?)) = —=(B° + 0) < =(B° +0) = Ox H; (2{ (I}') — 91" (I}")),

which leads to a contradiction. Hence, df (I “) dH(I*). We have thus proved that, if
Orp Vs (Ifey) 2 Or Vi (I1y), &F(1) 2 af (1), df (1) < df(I7), and dff(I7) < dff (I7).

Next, we show that di*(I%) < ds*(I%) for all I* < K,. If I* < IF or I® > max{IH I"},
ds*(I0) < ds*(I%) follows from dF(I8) < dF(I®) and dF (I¢) < dF (I*). Now we assume that % €
[IE, max{IH IH}]. If Io € [IL, IL), as*(10) = Io < &5*(1%). If ds*(1%) > d5*(I*), by Lemma EC.1,
O, Jp (a5 (I0), ds* (I0), I8) < By, J¢ (25 (I7), ds*(I2),I#). The first order condition with respect to z?
implies that Oy H (23 (1) — y3 (I0)) < —B° = Ox H (25 (I*) — 45 (I7)). Therefore,

O, B (™ (17), 1}') =0a, J7 (7™ (1}), dy™ (1}), I}') + Ox Hy (7" (I}') — w7 (1}"))
<0u, Iy (&5 (17), 3" (1), 1) + Ox Hy (&7 (1) — 9 (7))
=0, R*(d} (1), 7).
However, ds*(I%) > ds*(I#) implies that g, R*(d5*(I¢), %) > 04, R*(ds* (1), I¢). The contradiction
shows that if I € [IF, IF], d5*(I7) < ds*(I%).

If 1o e [IEIF], a3*(I0) = It > & (1), If di*(I%) > d5*(I¢), Lemma EC.1 implies that
D, I3 (w57 (I0), ds* (I0), I0) < By, J# (2% (1), ds* (I#), I). Since dx Hf (X) < dxHf (X) for any X and
di (1) > di (17), Ox Hi (" (1) = i (17)) < O Hy (3" (If) = 53 (If)). We apply the same argument
as in the case I¢ € [IF, L] and the contradiction shows that ds*(I#) < ds*(I¢) for all I# € [IL, IF].
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If I € [IF, 1] (which might be an empty set), the first order condition with respect to z¢ implies
that

OxH (2" (I7) = y" (1) = —(8° +6) < (8" +0) < Ox Hy (&7 (1) — §;" (7)) (EC.10)
It d*(I*) > d;*(I*), Lemma EC.1  implies that 8, J¢ (x5 (1), ds*(I8), 1) >
Oa, J7 (£5%(I%), ds* (I#), I#). The same argument as in the case I¢ € [IF, IF] proves that di*(I#) <
ds*(I%) for all It € [IF IF]. Hence, d5*(I7) < ds*(I%) for all I¢ < K,.

To complete the induction, we next show that if 612171 f/f_l(lf_l) > 31;11‘45—1(13—1) forall It | < K,,
ang,s(If) > 8121‘/;5(];1) for all I;l < Ka.

If I < IF, note that 9,4, J7 (x* (I2),ds* (I2), I8) = g, R (di* (1), 1) — Ox Hy (x5* (I1) — yi (1)) and
O, JH( 5% (1), d5* (1), I8) = By, Re(ds* (I%), 1) — Ox H (25 (I0) — 93 (I%)). By the first order condi-
tion with respect to %, Ox Hy (a5* (1) — ys (1)) = dx Hp (25 (I8) — 45 (I¢)) = —°. A simple contra-
diction argument leads to that d5*(I2) = ds*(I%), for I¢ < I*. Therefore:

O Vo (I7) - = e (p(di*(I7)) = b— ac)y'(I7) = v (I7)Ox Hy (a7 (1) — y; (I}'))
O ViE(I7) =+ (p(d (1) —b—ae)y (1) =/ (I)Ox Hy (&5 (17) = ; (1))
Hence, 8[tths(It“) =0 V2 (I7), for I < IF.
If It e [1F, 1],
OupVPIE) = e+ (p(d (1) —b—ac)y (If) + B°+ (1= /(1)) Hy (5" (1) — 3 (I2)
Ora Ve (I7) - =+ (p(di*(I7) = b— ac)y'(I7) — ' (I7)Ox Hy (&7 (1) — 9 (1))
Note that the first order condition with respect to z¢ implies that Ox H (x5*(I}) —yi (1)) < —5° =
Ox H (i (1) = 3 (I7)). 1 di* (1) = di* (1),
Ors Vi (12) — 043 Vi (I2)
== (I7) (Ox Hy (&7 (1) = 93 (1)) — Ox H (27 (I7) — w3 (1)) + B° + Ox Hy (&7 (1) — 95 (1)) 2 0.
If di* (1) > di (1), Lemma EC.1 yields that 0, J; (" (I7), di* (7). 1) > 04, J7 (7 (17), di* (17, 1),
ie.,
Ou, R (1), 1) — Ox H (a7 (1) — i (I7)) 2 00, R (dy™ (1), 1) — Ox H (87" (1) — 5 (17)).
(EC.11)
We have:
Ore VP (17) = g VP (1) =[(p(d;™ (7)) = p(d; (I7))) — (Ox Hy (25" (1) = 95 (11")) = Ox Hy (" (1) =y (I))]Y (1)

— (6% + Ox Hy (277 (1) — y; (I}')))
>[(p(d;* (7)) = p(d (1)) = (Ox H (&7 (1) = 5 (17)) = Ox Hy (" (1) = i (1)) ] ()
>[(p(d;" (1) = p(d;" (1)) = (D0, R (dy (1), I}') = 0, R (™ (1), 1)) (1)
=[p' (5 (27))ys (1) = 9 (™ (1)) g5 (1)) (1)

0,

4

(EC.12)
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where the first inequality follows from Ox H (x{*(I#) —yi(I7)) + 5° <0, the second inequality from
(EC.11), and the last from the concavity of p(-) and di*(I8) > ds*(I%).
I 07 € [Bf, I, wy (1) = 17 > 33 (17),

O Vi(I?) =ct (plds* (1))
D VAIE) =+ (plds(12)

ac)y'(I7) + B° + (1 = v'(I7))Ox Hy (27" (7)) — y; (1}))

—b—ac)y (If) + B + (L — v/ (I7))Ox H (&5 (I7) — §; (1))
If d5* (I7) = dy*(I7), Ox Hy (&5 (I7) — 5 (I8)) > Ox Hy (5* (I7) — y; (1)), and 9 Vi (I7) > Opa Vi (I7).
If d&* (I%) > ds* (1), as in (EC.12),
Ora Vi (1) — O Vi (1) > [/ (dy™ (1)) ys (1) — p/(dy™ (I7)) g (1)) (I7)
+(Da, R (d}7(I7), I7) — 0, RO (" (I7), 7)) (EC.13)
>0,

where the second inequality follows from d5*(I%) > d5*(I?).
If I* € [I”, 7] (which might be an empty set),

(1) =y (1) Ox H (™ (IF) =y (1)) — 6

VI = et (pldy (1) —b— ac) ﬁ
b ey (I) + 5+ (L (1) 7 (357 (1) — 5 (1),

~
O V(L) = e+ (p(di™ (1Y) ac)y
(EC.10) implies that Oy H;(Z:* (1) — g5 (I%)) > Ox Hi (a5*(I8) — ys(I%)) and dx HE (&5 (I0) —
G5 (I#)) + 85 + 6 > 0. The same argument as in the case I® € [IL, IF] implies that 8Ig17ts(ff) >
Orp Ve (If) for I € [If1, I}")
If ¢ > max{I# IF},
e Vi (I7) = e+ (p(di*(17) = b= ae)y (17) =o' (1) Ox H (27 (1) =y (IF)) —
e V(L) = e+ (p(dy™ (1) —b—ac)y'(I7) — v/ (I7) Ox Hy (27" (I}) — 9 (I}')) —
Note that
Ox Hy (27 (1) = 95 (1) = = (B° +0) > —(8° +0) = Ox H; (" (I') — y; (I}).
I di* (1) = di” (1),

VEA(I?) = 0 V(1) = = (I (Ox H (&7 (1) = 95 (1) = Ox H (" (1) = y; (1)) + 6 = 6> 0.

If d5*(I0) > ds*(I?), the same argument as (EC.12) implies that

~

V(L) = 0 Vo (I7) 2 [ (5" (1) g (1) = p'(dy (1) (1) ] (1) +6 = > 0.

We have thus showed that, if 8121_117&1([371) > O V2 (1) for all I | < K,, 8@1{@3([3) >
Ora Vo (1) for all I < K, which completes the proof of Theorem 5. Q.E.D.
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Proof of Theorem 6: We first show part (a). Observe that if h,, > h, and Y(I7) =, for all
It < K,, withholding positive inventory is dominated by displaying this part of inventory to
customers, because the holding cost at the customer-accessible storage is smaller than that at the
warehouse, and there is no demand-suppressing effect of customer-accessible inventory. Therefore,
the firm should not withhold any inventory if h,, > h, and §(I}*) =~ for all I} < K,.

Next, we show part (b) by backward induction. Since it is optimal for the firm not to withhold
any inventory in the model with demand f)t, this model is reduced to the one discussed in Section
5.1, i.e., the model without inventory withholding. Let K,(I{) := V;(I}, I}*). It suffices to show that
if g Vi (1)) > 0pa Ky 1 (IEy), for all If, < K, (a) ap(I7) <&5*(I7), (b) di(If) > d;*(If), and
(c) 81gf/ts([f) > Ora K (If), for all I < K,. For t =0, Ve (I8) = Ko(I2) = 0, so the initial condition
is satisfied.

If Ope Vi (I8 ) > 0pa K, (Ify) for It < K,
OxH(X)>0xLy(X,Y)+ 0y Ly(X,Y) for X =Y,
where H#(X) is defined in the proof of Theorem 4, and
Li(X,Y) :=Ee{—(he +0)(X — )" + Vi1 (X — ¢,V —¢f) — Y]}

Therefore, the same argument as in the proof of Theorem 4(a) shows that x¢(I7) < z7*(I7) and
a(17) > di*(I7).

To complete the induction, we show that if a,g_lﬁil(fg,l) > Ora K; (I ) for all I | < K,,
Blgf/f(lta) > 01 Ky (17), for I < K,. Since xy(I}) <&3*(I7), o (IF) <ap(IF) =IF. I I} < T},

Ore Ki(I7) < e+ (p—b—ac)y (I}) < e =0 Vi (I}).

For the case I > I’ the argument is very similar to that in the proof of Theorem 4, so we only

sketch it. The key step is to show that
Ox Hy (17 = 9 (17)) 2 Ox Lo (I 1) = ye (1), 7 = ye(17)) + Oy L™ (1 17) = e (1), 17 = (1),

where 7 (I{) is defined in the proof of Theorem 4 and y,(I}*) := d¢*(I#, 1) + (). To show the
above inequality, let y*(I{) be the optimal expected demand in the system with demand D, such
that the firm is forced to display z¢*(I, 1) to customers and withhold I — x¢*(I¢,I#) > 0 in the

warehouse, when the current customer-accessible inventory level is I > I, Let

Ly(X,Y) =Eea{—(ha +b)(X =) + V2 (Y —¢f) — eV},
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Following the same argument as the proof of Lemma EC.5, we have:
Ox H (I — 7 (7)) 20 L (" (17, 1) = i (1), 1} = i (1)) + O Loy (I 1) =y (1), I} =y (I7))

Zath(l’?*(IfaIta) _yt(If),Ita - yt(If)) +3YLt(33ta*(If,If) - Z/t(Ita)vlf _(yt(lf)))
EC.14

Based on (EC.14), the same argument as the proof of Theorem 4(a) yields that OI;:VtS(If) >
Ora Ky (I7'), for all If < K,. This completes the induction and the proof of Theorem 6(b).
Q.E.D.

Proof of Theorem 7: We prove Theorem 7 by backward induction. Let L,(X,Y) :=
Ea{G(X — €,V —€f)} and H,(X) := L(X, X), then gf(xf,d;, I¥) = Hy(zf — d, — v(I7)). Let
K, (1) = V(I3 If).

It suffices to show that if ﬁlg_th_l(It‘il) > ﬁlg_l‘/;il(ft‘il), for any I} | < K,, (a) z¢(I%) >
ry*(I7), (b) di (17, 1) < di*(If), and (c) Ore Ky (1) > O1a Vi (I7), for any I < K,. For t =0, Vi (I§) =
Ko(15) =0, so the initial condition is satisfied. Because e Ky 1(I{,) > Ora V2 (I{",), for any
It <K,, OxH,(X)>0xH;(X) for any X.

Following the same argument as the proof of Theorem 5, we have that if Ox H,(X) > 0xH;(X)
for any X, x¢(I%) > zF(I?) and d,(I#) < dE(18). Hence, IF < I :=sup{I?: x¢(I%) > I*}. Therefore,
we have that

0 (I, 1) = dy(I7) < A1) < (1), i I < 17,
where the last inequality follows from the supermodularity of J7(x¢,d;, I{*) in (z¢,d,) for any fixed
I,
If I, =1y > I}, o (I8, 1) < xf (I}, 1) = o3* (1) = I} = I,. Therefore,

di* (1) = argmax{ R(dy, I') + H{ (I = dy =(I1))} 2 dy(I}') := axgmax{R(d;, I}') + Hy(I} = dy —(I}))},

di€(d,d] die[d,d]

since
Oay R(dy(If),If) — Ox Hy (I — dy(If) — v(If)) > 04, R(d,(I7), I7) — Ox H,(If — dy(I7) — (7)),

where the inequality follows from Ox H;(X) > 0xH;(X) for all X. Similar argument yields that:

di (If', 1) = argmax{ R(dy, I}') + Ly (2" (I}, It) — dy =y (I}), I} — dy =7 (1})) }
di€ld,d|
<dy(I}') = argmax{R(dy, I}") + Lo(I} — dy —y(I}), I} —dr —~(I}"))},
d€[d,d]

because L;(-,Y) is concave for any fixed Y. Hence, d; (I¢, I,) < d,(I#) < d;*(I¢) for any I, = I¢ > I;.

To complete the induction, we need to show that if 9ra  K; 1(f;) > Ora_
It < Koy 0o K (1) > 01a V2 (If), for any I < K,. For If < If, x¢*(I¢, 1) = zf (I}, 1,). Same
argument as in the proof of Theorem 5 implies that dra K;(If') > 0ra Vi*(I7), if I < I}.

1 V(1) for any

If I > I}, the proof is based on the following lemma:
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LEmMA EC.6. Assume that Ip > If. Let

V (If) = clf —|—dHel[8:)fi]{R(dt,Ia)+ﬁIG+Lt(IG dy —~(I7), I} —dy —y(I}))}.
t

We have:
01 Vi (I¢) < 03¢ Vi (I7) < 0 K (1), (EC.15)

Proof of Lemma EC.6: The first inequality follows from the same argument as the proof

of Theorem 5. For the second inequality, observe that

O Vi(L7) =c + B+ (p(di(17)) — b — ac)y(I7)

+ (L= (I7)Ox Lol If = dy( 1) =7 (I7), I} = da(L7) = (1)
+ (L= (I Lol I} = di(I) = (I7), I = di (1) = (1),
and Ora Ky (I}') =c+ B+ (p(d; (I}, 1;)) — b — ac)y' (I}

)
P (L 1) =y (1), I = di (I, 1) =y (1F)
i (

+ (L=~"(I}))Ox L (" (17 1) —
)0y Li( I 1) =~ (), I = di (I, 1) — y(I7)))-

+ (1=~ (I7)) 0y Lo (2™ (I} 1) —
Thus,
Orp K (17) = Org Vi(17) = (p(d; (17, 1)) = p(de (1)) ) (1)

VIO L™ (I, 1) — di (17 1) = (1), I = di (I, 1) =~ (1}))

= Ox Lo(If = dy(I') =y (1), I} = da(17) = (1)
+ Oy Loy (17 L) — dy (17 1) =y (1), I — di (I, 1) — (1))

= Oy Li(L = d(17) = A7), I = dy(17') =7 (I})]
+Ox Loy (I 1) — di (17, 1) =y (1), I = di (I, 1) =y (17))

= OxLo(If = dy(I}') =y (I}), I} = di(17) = (1)
( di (I3 1) =y (I), I = dp (I, 1) =y (17))

(L (1), I = da(17) =7 (I7)).

+8YLt X *( )

— Oy L(I — dy(I%) —

(EC.16)

Based on the first order condition with respect to d; and Lemma EC.1, the same argument as

inequality (EC.12) yields that Ora K, (I7) — 8Iaf/;([“) >0, and hence (EC.15) holds. Q.E.D.

By Lemma EC.6, 05 K:(I}) > 8IaV (1) > 0raVP(I}) for all I} < K,. This completes the
induction in the proof of Theorem 7. @Q.E.D.

Proof of Theorem 8: The proof, based on backward induction, is very similar to that of Lemma

4 and Theorem 1, so we only sketch it. In particular, the continuous differentiability of V" (I}, ;)
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follows from the same argument as in the proof of Lemma 4 and is, hence, omitted. Note that
Vo (I, Io) — clg — rql§ = —cly — rqaI§ is jointly concave, continuously differentiable, and decreasing
in both of its arguments.

If V7 (I8, Ii—1) —ralf, — cl;—q is jointly concave and decreasing in I ; and I,_1, G} (x,y) is
decreasing in both x and y. Hence, the same argument as in the proof of Lemma 4 shows that, for

any realization of (7, €)"),
—(ra+ru)(yy —I')” + oy + G (yy — Dy, xp — Dy)
=—(ra+ro)(yy —I')” + oyl + Gy — (de +(17))€" — €0 = (dp +(1}))€" — €f)

is jointly concave in (y¢,x,dy, If*). Concavity is preserved under maximization and expectation, so

Ep,{ max {=(ra+ro)wi —17)" + oy + G (yy — Dy, xe — Dy)}}

min{ D¢, I} <yg <min{Kq+Dy¢,xt}

is jointly concave in (x,ds, I}). Since R(dy, 1) + rq(d: + (1)) is jointly concave in (d;, I}), and

0(x, — 1)~ is jointly concave in (z, 1),
R(dt,Ita) +'rd(dt + ")/(Ita)) — 0<xt — It)7 — '(/th

+Ep,{ max {=(ra+ro)yi —17)" + dyy + Gy (yy — Dy, xe — Dy) }}

min{ D¢, I} <yd <{Kq+D¢,zt}

is jointly concave in (zy,d;, If). Since concavity is preserved under maximization, V; (17, 1) is
jointly concave in (12, I;).

Next, we show that V;" (I}, I;) — rqoI} — cl; is decreasing in I and I;. Since all of terms in
—(ratro)(yy = 15"+ 0y + G (y) = (d (7)€" =€ = (di+y (7)€" —€f) is decreasing in I,

it is decreasing in I itself, if the constraints min{/¢, D,} <y¢ < min{K, + D;,z,;} is not binding.
Ify; =17,

—(ra+re) (W —I)” +dyd + G (yf — (de +~(I7)) € — €F,xp — (de +y(I7))el” — €)
=l + Gi(I; — (di +y(I7))et" — e, — (di +y(I7) )€ —€f).

If oI7 + Gy (17 — (de + (1)) e — € xy — (dy +y(If)) €] — €) is strictly increasing in I7,
—(ratro) (Wi =) + oyl + G (y) — (de+ (7)€" — €, 2 — (de+y(I7) )€ —€) is strictly increasing in yy

in a small right-neighborhood of Ij: [I}*, I} 4 &), for a small enough £ > 0. Under this condition,

yy = I is not an optimizer. Hence,
—(ra+rw) (Yl —I11) " + oyt + G} (yi — (de +v(I7)) e — €, xe — (dy +v(I])) € —€}) is decreasing in I},

if it is optimal to choose y{ = I}
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If yi = Dy,
= (rat+ro)(yr = 1) " + oy + GLy) — (de +9(I7)e" — €20 = (d + (7)€" = €f)
== (ratrw)(de +y(I)e" + & = I7)" + o((de + (1)) € + €f) + G (0,2 = (de +7(I]))€)" — €])
is decreasing I}
Analogously, if yi = K, + Dy,
= (ratrw) (W = 1)" + oy + Gy — (de +y(I7))ef — etz = (di +7(I7)) " — €f)
== (ra+ 7)) (Ka+ (d +y(I7) 6" + € = I7) + ¢(Ko + (di +7(I7))€)" +€f)
+ G (Ko, 20— (d +(17)) 6" =€)
is decreasing in I;.
If yi =y,
— (ra+ra) (U — I + oy + G (e — (d 7 (I0))el — b0 — (du+ (7)) el — €6)
== (ratruw)(we —I})" + b + G (2 — (de +(I]))€)" — €, 20 — (di +7(I7))€]" — €7)
is decreasing in I;.

Hence,

{=(ratrw) (i = 1) + oyl + G (y — (de (L))" — €= (de+y (1)) 6" —€/)}

max

min{ D¢, I } <yg <min{z¢,Di+Ka}

is decreasing in I?. Because, —6(xz; — I;)~ is decreasing in [, and F"(I{) C F"(I3) for any I > IS,
‘/Z-(Igv]t) —'I"dIf—CIt = max {R(dt,ff)—{—?“d(dt—l—’y(lt“)) —9($t—lt)_ —¢$t

(wg,de)€FT (1)

+EDt{ max {_(Td"i_rw)(y?_ItCl)i"i_d)y?

min{ Dy, 18} <y@ <min{as, Ka+Dy}
+ G (yi — Dy, we — Dy}
is decreasing in I and I;. This concludes the proof of part (a). Part (b) follows directly from
the concavity of V;" (-,y) for any y and (12), while part (c) follows from the same argument as

the proof of Theorem 1. Q.E.D.

EC.2. Examples of Concave R(-,-) Functions

In this section, we give some concrete examples of jointly concave R(-,-) functions. We characterize
the necessary and sufficient conditions under which R(-,-) is jointly concave for some specific forms
of p(-) and ~y(-). We discuss four families of p(-) and v(-): (a) the inverse demand function, p(-), is a
power function and scarcity function, v(-), is an exponential function; (b) p(+) is a power function
and (-) is a power function; (c) p(-) is an exponential function and 7(+) is an exponential function;
and (d) p(-) is an exponential function and 7(-) is a power function. These four cases are the
most commonly used inverse demand functions and scarcity functions in the literature (see, e.g.,
Sapra et al. (2010)). The results in this section show that the necessary and sufficient condition
characterized in Lemma 1 can be satisfied by these popular p(-) and v(-) functions under certain

conditions, which are presented in model primitives and easy to verify.
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EC.2.1. Power Inverse Demand Function and Exponential Scarcity Function

In this subsection, we specify the functional form of p(-) and (-) as p(d;) = po — (d;)¢ and y(I?) =
Yo — exp(nl;’). Under Assumptions 1 - 2, the parameters satisfy the following: ( > 1, n>0, d >0,
po—b—alct+ry) — d¢ > 0, and d+ vy — exp(nK,) > 0. First, we compute the first and second order
derivatives of p(-) and ().

P'(de) = —C(de)* ™, V' (I7) = —nexp(nl}),
{Pﬁ(dt) =—C(¢C—1)(dy)" 2, {fy”(It“) = —n?exp(nl?). (EC.17)

1oray\2
Note that — (1,%2; =exp(nlf) <exp(nkK,). Hence, the necessary condition characterized in Lemma
t

2(b) for R(-,-) to be jointly concave is satisfied for this family of p(:)’s and v(-)’s. Next we char-

acterize the necessary and sufficient condition for R(-,-) to be jointly concave for power inverse
demand functions and exponential scarcity functions.
LemMA EC.7. Ifp(d,) =po—(d;)S, y(I#) =0 —exp(nI?), with { > 1,1 >0, py—b—a(c+ry) —d¢ >
0, and d+ o —exp(nK,) > 0. We have:
(a) R(-,-) is jointly concave on its domain if and only if
. (d* exp(nK,)

po>b+alc+ry)+ (d)° + - . (EC.18)
i ’ (¢+Dd+ (¢~ 1)(70 — exp(nK.))
(b) Suppose that ¢ > 1. R(-,-) is jointly concave on its domain if and only if
¢d¢ exp(nK,) C+1 -
>exp(nK,)+ =— — d. EC.19
702 PR b —alctra—d) (-1 (BC.19)
Proof:
Part (a). Plug (EC.17) into (3), we have that R(-,-) is jointly concave on its domain if and only
if

((C+1)de+ (¢ = 1) (0 —exp(nI}))) (o —b—alctra) = (di)*) = C(di) exp(nl}), for any d; € [d,d], and I} < K,.

Therefore, R(-,-) is jointly concave on its domain if and only if

¢(dy)¢ exp(nl}) ] ¢
DT+ Do) for any d, € [d,d], and I ?Eféazo)

Since the right hand side of (EC.20) is increasing in d; and I, R(:,-) is jointly concave on its
domain if and only if (EC.18) holds.

Part (b). Since ¢ > 1, (EC.19) is equivalent to (EC.18). Therefore, if ¢ > 1, R(-,-) is jointly
concave on its domain if and only if (EC.19) holds. Q.E.D.

po>b+alct+ry)+(d)s +

Lemma EC.7 specifies the necessary and sufficient condition characterized in Lemma 1 in the
case with power inverse demand functions and exponential scarcity functions. In short, R(-,-) is
jointly concave on its domain if and only if (a) py is sufficiently large, or (b) ( > 1 and -, is

sufficiently large.
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EC.2.2. Power Inverse Demand and Scarcity Functions

In this subsection, we specify the functional form of p(-) and () as p(d;) = po — (d;)¢, (1) =
Yo — (I})", for 0<I}<K,,
Yo, otherwise.
(>1,1>2,d>0,py—b—alc+ry) —d* >0, and d+ v, — (K,)" > 0. First, we compute the first

Under Assumptions 1 - 2, the parameters satisfy the following:

and second order derivatives of p(-) and v(-).

p'(de) = —C(dy)*
{p"<dt> — (D) (BC21

, —n(Io)yt, f0<I<K,, , —n(n—=1IH)"2, H0<IF <K,
I = I = EC.22
V(T {O, otherwise, (77) 0, otherwise. ( )

1oray\2
Note that for 0 < I < K, —(:/%25 = %(Ita) =
t

1-(K,)". Hence, the necessary condition char-
acterized in Lemma 2(b) for R(:,-) to be jointly concave is satisfied. Next we characterize the
necessary and sufficient condition for R(-,-) to be jointly concave for power inverse demand func-
tions and scarcity functions.

70_(17)777 fOTOSISSK(M
Yos otherwise.
po—b—alct+ry) —d* >0, and d+y, — (K,)" > 0. We have:

Lemma EC.8. If p(d;) = po — (d)*, v(I}') = , with ¢ > 1, 1> 2,

(a) R(-,-) is jointly concave on its domain if and only if

7 C(J)Cn(Ka)n

0>b d)* - : EC.23

Pz bt alet ) (O D D+ (- Do — (Ko7 (HC2)
(b) Suppose that ( > 1. R(-,-) is jointly concave on its domain if and only if
. ¢(d)Sn(K,)" (+1-

o2 ) e D= b—alcrra —d) (1" ez

Proof:
Part (a). Plug (EC.21) and (EC.22) into (3), we have that R(-,-) is jointly concave on its domain
if and only if

(n =D +1)de + (¢ =10 = (I7)") (po — b= alc+ra) = (di)*) = ¢(de) n(I})",

for any d; € [d,d], and I < K,. Therefore, R(-,-) is jointly concave on its domain if and only if

alc+r ¢ Cdy)on(I7)" or an 1], and I¢
po2 bt alet T A G ), 1 (- e ) O Gl and g E
(EC.25)

Since the right hand side of (EC.25) is increasing in d; and I?, R(-,-) is jointly concave on its
domain if and only if (EC.23) holds.
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Part (b). Since ¢ > 1, (EC.24) is equivalent to (EC.23). Therefore, if ( > 1, R(-,-) is jointly
concave on its domain if and only if (EC.24) holds. Q.E.D.

Lemma EC.8 specifies the necessary and sufficient condition characterized in Lemma 1 in the
case with power inverse demand and scarcity functions. As in the case with power inverse demand
functions and exponential scarcity functions, R(-,-) is jointly concave on its domain if and only if

(a) po is sufficiently large, or (b) ¢ > 1 and 7, is sufficiently large.

EC.2.3. Exponential Inverse Demand and Scarcity Functions

In this subsection, we specify the functional form of p(-) and () as p(d;) = py — exp((d;) and
Y1) =~ —exp(nl). Under Assumptions 1 - 2, the parameters satisfy the following: ¢ >0, n >0,
po—b—alc+ry) —exp(¢d) >0, and d+ v —exp(nK,) > 0. First, we compute the first and second
order derivatives of p(-) and ~(-).
{p%dt) = —Cexp(Cdy), {7’(121) = —nexp(yly), (BC.26)
p(di) == exp(Cdi), | V(1) = —n*exp(nl}).

a2
Note that — (1,%}3; =exp(nlf) <exp(nkK,). Hence, the necessary condition characterized in Lemma
t

2(b) for R(-,-) to be jointly concave is satisfied for this family of p(-)’s and 7(-)’s. Next we charac-
terize the necessary and sufficient condition for R(-,-) to be jointly concave for exponential inverse

demand functions and scarcity functions.

LemMmA EC.9. If p(dy) = po — exp(¢dy), v(I7) =0 — exp(nly), with (>0, n>0, pg —b— a(c+

rq) —exp(¢d) >0, and d+ v — exp(nK,) > 0. We have R(-,-) is jointly concave on its domain if
and only if:

(a) J
i} ¢ exp(¢d) exp(nkKa)
poz bt aletra) b expled) g — exp(nEL)

(b) I !
exp((d) eXp("?Ka> Cd+2
Yo = GXP(UKa) + Po — b— Oé(C+ Td) - GXP(CJ) N C .

(EC.27)

(EC.28)

Proof:
Part (a). Plug (EC.26) into (3), we have that R(-,-) is jointly concave on its domain if and only
if

(Cdi+2+C(vo—exp(nl})))(po—b—alc+714) —exp(nd;)) > Cexp(¢d;) exp(nly'), for any d; € [d,d], and I} < K,.

Therefore, R(-,-) is jointly concave on its domain if and only if

Cexp((dy) exp(nlf') 7
, for any d; € |d,d], and I < K,.
Cdy +2+ C(vo —exp(nlf)) i€ ld-dl '

(EC.29)

po > b+ alc+ry) +exp(Cdy) +
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Since the right hand side of (EC.29) is increasing in d; and I?, R(-,-) is jointly concave on its
domain if and only if (EC.27) holds.

Part (b). Since ¢ >0, (EC.28) is equivalent to (EC.27). Therefore, R(-,-) is jointly concave on
its domain if and only if (EC.28) holds. Q.E.D.

Lemma EC.9 specifies the necessary and sufficient condition characterized in Lemma 1 in the
case with exponential inverse demand functions and scarcity functions. In short, R(-,-) is jointly

concave on its domain if and only if (a) p, is sufficiently large, or (b) ~, is sufficiently large.

EC.2.4. Exponential Inverse Demand Function and Power Scarcity Function

In this subsection, we specify the functional form of p(-) and ~v(-) as p(d;) = po —exp({d:), v(I}) =
vo— (I8, for 0< I* < K,
Yo, otherwise.
(>0,7>2, py—b—alc+ry —exp({d) >0, and d+ vy, — (K,)" > 0. First, we compute the first

Under Assumptions 1 - 2, the parameters satisfy the following:

and second order derivatives of p(-) and ().

p/(dt) = _Cexp(cdt)7 (EC 30)
p'(ds) = —¢* exp((dy),
e —np(IM)" 1, H0<I*<K,, ,, . —n(n—1)IH)"2, if0<I*<K,,
Vg =4 =K gy = g = D) : (EC.31)
0, otherwise, 0, otherwise.

/orayy2
Note that for 0 < I} < K,, — (1,5825 = n—fl(It“)’7 < %(Ka)”. Hence, the necessary condition char-
t

acterized in Lemma 2(b) for R(-,-) to be jointly concave is satisfied. Next we characterize the

necessary and sufficient condition for R(-,-) to be jointly concave for exponential inverse demand

functions and power scarcity functions.

,YO_(Ita)na fOT’OSIgSKa,
Yo, otherwise.

po—b—alct+ry) —exp(¢d) >0, and d+ v, — (K,)" > 0. We have R(-,-) is jointly concave on its

Lemma EC.10. If p(di) = po — exp(Cdy), v(I}') = , (>0, =2,

domain if and only if:

(a)

7 CeXp(Cd)n(Ka)n
po > b+al(c+ry) +exp(Cd) + = Dicd+2+ 00— (K] (EC.32)
(b) _ _
o> (K)" + exp(cd)n(Ka)" __dt2 (EC.33)

(n—=1)(po — b—afc+ra) —exp(Cd)) ¢
Proof:

Part (a). Plug (EC.30) and (EC.31) into (3), we have that R(,) is jointly concave on its domain
if and only if

(n=1)(Cdr +2 4 (0 — (I})") (po — b= ac+ 74) — exp(Cdy)) = Cexp(Cdy)n(1})",
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for any d; € [d,d], and I} < K,. Therefore, R(-,-) is jointly concave on its domain if and only if

Cexp(Cdy)n(Ig)” ] )
1 Dlcds + 2+ Clyo — @) O h € ldl, and 7 < Ko

(EC.34)
Since the right hand side of (EC.34) is increasing in d; and I, R(:,-) is jointly concave on its
domain if and only if (EC.32) holds.
Part (b). Since n>2 and ¢ >0, (EC.33) is equivalent to (EC.32). Therefore, R(-,-) is jointly
concave on its domain if and only if (EC.33) holds. Q.E.D.

po > b+ alc+ry) +exp(Cd;) +

Lemma EC.10 specifies the necessary and sufficient condition characterized in Lemma 1 in the
case with exponential inverse demand functions and power scarcity functions. As in all three cases
above, R(-,-) is jointly concave on its domain if and only if (a) p, is sufficiently large, or (b) v, is

sufficiently large.

Lemmas EC.7 - EC.10 confirm our previous insight delivered by Lemma 3 that when the price

ddy/dy

ape /ot |) is sufficiently high relative to the inventory elasticity of demand

elasticity of demand (i.e., |

. d /
(e | dlg/yg

), R(-,-) is jointly concave in (d;, I{*) on its domain. Therefore, Assumption 3 can be
satisfied for popular families of p(-)’s and ~y()’s. Finally, we remark that the above method can
be easily adapted to characterize the conditions under which R(:,-) is jointly concave with other

families of inverse demand and scarcity functions.
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